
Some Theorems Concerning 
Pseudo-Random Numbers 

By D. L. Jagerman 

Some quantitative theorems concerning the use of pseudo-random numbers 
will be presented. Let xl, ... , xp be a given sequence satisfying 

(I1) O 5 xs ;9 1, 1 ;5 j S5 P.9 

and f(x) a real, integrable function; then the first four theorems estimate the 
quantity 

(2) | l f(xi) f(x) dx 

Further restrictions on the sequence Xj will be imposed through a trigono- 
metric suni. Let n # 0 be an integer, and let 

*(3) e z = e 

then effective estimates for the size of 
P 

(4) | e(nxj) 
i-1 

will be required. Restrictions on the function f(x) will be imposed by means 
of its Fourier coefficients. Thus, let f(x) be given by 

1 de 

(5) f(x) f (u) du + I' cn e(nx), 

in which the prime shows the absence of the ternr n = 0; then growth restrictions 
on C will be required. The fifth theorem is concerned with multiply sequences; 
it provides an estimate for the deviation of such a sequence from the ideal uniformly 
distributed case. The symbols (x] and {xI will be used to denote the integral part 
and the fractional part of x, respectively. 

THEOREM 1. C> 0, K> 0, a> 0, O3 < 1, Y> 1 + a 

t cn I 9 C J n I-, ! e(nx) < K I n I' P 

1 p ,f(x) - dx < 2KC(v - a) 
Pj-i v~~~P- a -1 

Proof. The Fourier series for f(x) is 

(6) fAx) - E cne(nx) 
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in which 

(7) C f e(-nx)f(x) dx. 

Thus, since the sequence xi obeys the inequality 0 ? x;i 1, one has 

(8) P f )-* f (x) dx = E' c L e(nxj). 
Pj=1 n=-oo Pj- 

Since I cn I and I (1/P)j:7L= e(nxj) I are even functions of n, (8) may be put in the 
form 

P ~~~~~100 

(9) [ Zf(xj) f(x) dx |2 I 2 cn p e(nxj) 
P ,==l n=1 P i=i 

The conditions of the theorem imply 

(10) f(xj) -Jf(x) dx 2KCP' - 

Since 

(11) E 1 1+ dx Y v-a 
7,-,inl-a1J Xv-a v -a-i 

the theorem follows. 
THEOREM 2. C > 0, K > 0, a > 0, < K 1, v - 1 + a 3 

P 

cn j In[ , Ze(nx) < KIn n P', p > 3a/(1-5) 
j=1 

= L 2f(xi) - f f(x) dx < 2Pfl [2K(1 I)ln P +()]. 

Proof. The proof is the same as for Theorem 1 up to (9). One has 

(12) | f(x) -i f(x) dx < 2KCP i ( Ia + 2 >p() fi 

in which the estimate 

(13) P p (nx) 

was used in the second sum. Since 

1 C00 dx_1 

n>(4 la < J p(l-)Ia- / - (V- p) [P('-#/)IajY-1 

and 
(15) IPO' Va > p(1-)/a = -p(1-#la( _ p-(1-0)Ia) > 2p(1-#)/a 

one has 

1 3) l / 

(16) < 
n>p(i-#fi)a flP V 



420 D. L. JAGERMAN 

and, hence, 

(17) 2C 1i < - 3- aPI- 
n>P(l-P)la nv a 2 

Also, since 

(18) < 1 + = 1 + InP < 2 InP, 
I~jngP(1-P) la n1tof 1 Xat 

substituting (17) and (18) into (12) establishes the theorem. 
THEOREM 3. C > 0, K > 0, a > 0, 3 < 1, 1 < V < 1 + a 3 

P 

Cn C I n-, e(nxj) KI n P P > 3a/(1-9) 

| f(xj)- f(x) dx < 2CP'(>'f') [I K+ + v ? 1 

Proof. The proof of this theorem is the same as that of Theorem 2 up to (16). 
One has 

(19) Y7 l <fPl )/ dx 1< 
lS -o)/a nt-a -a 1-v + a 

and, hence, substituting (16) and (19) into (12) establishes the theorem. 
THEOREM 4. C > 0, K > 0, a > 0, , < 1, v > 1, v < a 3 

P 

c,,n C n f,, e(nxj)) K n Po, P > 3a/(- 
i-1 

|~. 1- f(xjx) dx P j-ff1x 

< 2CP(1-O)(vl)Ia [_ K + a + 1 (3)1] 

Proof. The proof of this theorem is the same as that of Theorem 2 up to (16). 
One has 

I~ P~~l dx (p(l-P)/a + 1)1-p+a 

(2) 1n1 -0)/a nI - 1 xpa 1 - v + a 

21 - +a(4)1 x p(l-a)(l+x)a 

Substituting (16) and (20) into (12) establishes the theorem. 
A multiply sequence is defined by the recurrence relation 

(21) xj+ ={xj + i?-} j > O 

in which X > 1, m > 0, u > 0 are integers, and x0 is arbitrarily chosen. Franklin [1] 
showed that, for almost all x0, a multiply sequence is equidistributed. Let mxo 
be an integer which is relatively prime to m, then mx1 is the sequence of integers 
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customarily employed as pseudo-random numbers. Inductively, one easily estab- 
lishes the following explicit representation: 

(22) x={ Xjxo+ +}. 

If mxo is an integer, then the sequence xi is clearly periodic in the sense that Xj+m =xi 
for all j; however, it is generally desirable that the sequence contain as many mem- 
bers which are incongruent modulo m as possible. This is accomplished by choosing 
for X a primitive root modulo m. A statistical function of interest is the distribution 
function, w(a). Let P denote the period of the sequence; then, if T(a) is the num- 
ber of elements of the sequence which do not exceed a, 

(23) w(a) = T(a) 

Since w(a) = O for a _ 0 and w(a) = 1 for a 1, it is convenient to restrict a so 
that 0 < a < 1. The following discontinuous function will aid in the determination 
of w(a). Let 

H. (x) 1, 0 < x < a, 

(24) Ha(x) 0, a x < 1, 

and define H(x) for all x by periodic extension; then 

P_ (25) w (a) =pE H. (xi) 

The special case = 0 of (22) will be studied in which X is a primitive root modulo 
m and P = 4(m), where +(m) is the totient. Thus 

(26) Xj= XjX1} 

and mxo is one of the numbers of a reduced residue system modulo m. In order to 
investigate the distribution function of this sequence, several lemmas are needed. 
Let 

(27) p(x)- = -2 X; 

then: 
LEMMA 1. 

1w(at)aIB1 iEP(Xj) + 1 P(Xj-a) 

Proof. One has 

(28) Ha(x) = a + p(x) - p(x - a), 

which may be established by consideration of the two cases 0 ? x < a and 
a < x < 1. Thus, from (25), 

(29) w(a) + - E p(xj) - E p(xj -a). 
P i=I P I=l 
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The lemma follows from (29). 
LEMMA 2. 

t > 0 -2 + t p (x + u) du ? p(x) : + t p(x + u) du. 

Proof. From the monotonicity of [x], one has 

($0) t J [x + ul du 5 [x] 5 t [x + ul du. 

Since 

(31) [x] = x-I + p(x), 

substitution of this into (30) yields the lemma. 
LEMMA 3. t > 0 

00 00 

--+ E do (nx) :5 p (x) :5 E ene (nx) +l 2t n--oo n-oo 

=n ld.I :! mnin(2 2t) l Cn s-s dn 2 5 m n(2 21r2n2) 

Proof. Use of the Fourier series 

(32) p(x) - n, ern 

yields 

t f p(x + u) du =X cne(nx), 

(33) 1-e(8) 

Thus 

(34) c=n 4 2n2 et -1 2r2n 

From the identity 

(35) e( )-1 2ieQn) sin , 

one has 

(36) e(t-i 2 n 

Applying (36) to (33), one has 

2= I r n 
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Similarly, 
0 ~~~~~~~~~00 

t p(x + u) du = X' dne(nx), 
ilt n -o 

(38) e - 1 

Equations (33) and (38) show that 
(39) dn = Cn 

and, hence, that 

(40) Jdn = |Cn | 
Inequalities (34) and (37) are also valid for dn; hence, the lemma is established. 

LEMMA 4. 

t > O. yj real p(yj) < min 2 e(nyj) +2t 

Proof. In the inequalities of Lemma 3, x is replaced by yj and summation is 
performed over j. Thus. 

x , P P 00 P 

(41) + L i' dnZe(ny,) < p(yj) -< L ' cn', e(nyj) + - 
2t P n=-00 j= P j=l P n=-x jo 2t 

and, hence 

-1 - Zf' I dn Z e(nyj) ? E P(Yj) (4) 2t P n==_0 j1 = 

<pE' I Cn |I|L e (nyj) | 2 
(42) 1~~~~~~~~~ n=o ,1T 

From Lemma 3, one has Cn dX 1; also, I Cn I and I E'=I e(nyj) are even func- 
tions of n, hence, 

P 20 1 (43) _ y) Cn Z e(nyj) +-. 
p j=1- n=1 _ 2t 

Use of the inequality 

(44) jC I-< minQ ,22), n > 0, 

yields the lemma. 
It will be convenient to introduce the function 5n,d defined by 

(45) a6n,d = 1, dln, 

=nd 0 d)n. 
LEMMA 5. 

xj is defined by (26), P = - (m) E Z e(nx3) < E 6nid- 
j=1 dim 
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Proof. Since*e X is a primitive root modulo m, X' runs through a reduced residue 
system. Let 

(46) X'mxo r (mod m), 

where r is the least nonnegative residue; then r runs through a reduced residue 
system modulo m, and 

(47) E e(nxjxo) = E2eQn ). 

The sum E. e(nr/m) is a Ramanujan sum whose value can be expressed in terms 
of the Mbbius function, s(n) [2]. Let cm(n) denote the Ramanujan sum; then one 
heas 

(48) Cm(n) d ddj). 
dl (m,n3 

Thus 

jcm(n) t s I d 2 d8n,d. 
dj (m,n) dim 

It is now possible to establish 
THEOREM 5. Xi+1 {=Xxj, 0 < xo < 1, m 2 3, (mxo, Im) 1, X is a primitive 

root modulo m, w(a) i8 the distribution function, P = 0(m) 

W(a) -a < 4V 3In 

Proof. Use of Lemmas 1 and 4 yields 

(49) E p(.x| -p a) ? e(nxj) |+2n ' 

and 

. 2 ~~~ 1 t 'P 
p cLomin(,,n | E e(nx1) + 

Lemma 5 is now used to provide an estimate for the trigonometric sum appearing 
in (50). Define the summation variable y by n -yd, then 

(51) co (am) a p E min 22 +t 

When 

(52) t > ird, 

one has 

.1 t _ ~ ~t 
(53) E min-, 22d1 - r22d 

Since 
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one has 

(55) I < In t 
l;SitS/rd 7r-Y 7 

Similarly, 

(56) E 1< 
-Y>tfwd Y Y-l(t/rd+I+ 

2 tJt/d] X2 [t/7rdJ 

Since 

t < t 
(7d[t/)dl = r~d 

one has 

(58) t fl t 
lf>t/rd r2'y2d -2d 

and, hence, (53), (55), and (58) yield 

(59) E min(-y r2.y2d) < 1r+ lr2d t _ 7rd. 

When 

(60) t < rd, 

one has 

(61) 1 min(k, 2 r2 y 1 
2 < r2d 

'Y=1 \ir'yI 7rly d/ - di Y- r2d ~~ 

Hence, using (59) and (61) in (51), one obtains 

(62) 1w() 
_ 

a < 
2 E (InY + t) +2 t 

I 16d~t/ 7r r ar d P ld<,m 7rd t 

Thus 

(63) i w(a)-a | < 
4 

t ln t + d + t 

In obtaining (63), the estimate of (54) was used. Since 

> - < 1 + Inm < 21nm, n > 3, 
1?dim d 

one has 

(64) (A () - a < 4t In t + 8t In m + 
I 

72P ~~~~t 

Let 

0 < t < m; 
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then 

(65) w(a)- a I < 12 I t +1 
1rP t 

The choice 

(66) = 2V'1- (66) 
~~~~~~~2 3 In in 

yields the inequality of the theorem. 
When 

(67) m= 2a a > 2, 

the period is given by 

(68) P= (m) = 2 

and there is no primitive root; hence, Theorem 5 is not directly applicable. The 
estimation of the trigonometric sum depended on Lemma 5 which requires r to 
run over a reduced residue system. However, if one considers two distinct C's, 
the powers of which together constitute a reduced residue system, then Lemma 5 
is again operative and the estimate provided by Theorem 5 is valid. In fact, one need 
only consider the sequence obtained on setting X = 5 in order to obtain one half of 
the required reduced residue system; the other half is provided by the negatives of 
the first half. 
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